Hierarchical DSmP transformation for decision-making under uncertainty

Dezert, J. ; Han, D. ; Liu, Z. ; Tacnet, J.M.

Type de document
Communication scientifique avec actes
Langue
Anglais
Affiliation de l'auteur
ONERA PALAISEAU FRA ; XI'AN JIAOTONG UNIVERSITY CHN ; NORTH WESTERN POLYTECHNICAL UNIVERSITY XI'AN CHN ; IRSTEA GRENOBLE UR ETGR FRA
Année
2012
Résumé / Abstract
Dempster-Shafer evidence theory is widely used for approximate reasoning under uncertainty; however, the decision-making is more intuitive and easy to justify when made in the probabilistic context. Thus the transformation to approx- imate a belief function into a probability measure is crucial and important for decision-making based on evidence theory framework. In this paper we present a new transformation of any general basic belief assignment (bba) into a Bayesian belief assignment (or subjective probability measure) based on new proportional and hierarchical principle of uncertainty reduction. Some examples are provided to show the rationality and efficiency of our proposed probability transformation approach.
Congrès
15th International Conference on Information Fusion, 09/07/2012 - 12/07/2012, Singapour, SGP

puce  Accés à la notice sur le site Irstea Publications / Display bibliographic record on Irstea Publications website

  Liste complète des notices de CemOA