Ground-penetrating radar and surface nuclear magnetic resonance monitoring of an englacial water-filled cavity in the polythermal glacier of Tete Rousse

Garambois, S. ; Legchenko, A. ; Vincent, C. ; Thibert, E.

Type de document
Article de revue scientifique à comité de lecture
Langue
Anglais
Affiliation de l'auteur
CNRS ISTERRE GRENOBLE FRA ; IRD UMR 5564 LTHE GRENOBLE FRA ; CNRS UMR 5183 LGGE GRENOBLE FRA ; IRSTEA GRENOBLE UR ETGR FRA
Année
2016
Résumé / Abstract
In polythermal glaciers, specific climatic, topographic, and exposure conditions may lead to the formation of englacial lakes that can produce catastrophic effects downstream in the event of abrupt natural drainage. We have determined how a combination of ground-penetrating radar (GPR) and surface nuclear magnetic resonance (SNMR) surveys helped to locate and visualize the evolution of a water-filled cavity within the Tete Rousse glacier (French Alps). We have used GPR results to delineate the roof of the cavity and monitor the cavity deformation caused by artificial drainage. Because the glacier bed and cavity have complex 3D geometries, we needed dense acquisition lines and 3D GPR views to qualitatively identify out-of-plane reflections. This 3D approach made it possible to establish a precise map of the glacier bed topography, the accuracy of which was verified against borehole observations. Then, repetitive GPR measurements were used to obtain a quantitative estimate of the vertical deflection of the cavity's roof and changes in crevasse geometry observed in response to the decrease in the water pressure when 47; 800 m(3) of water was drained by pumping. We have used 3D SNMR imaging to locate water accumulation zones within the glacier and to estimate the volume of accumulated water. The SNMR monitoring revealed that in two years, the cavity lost approximately 73% of its initial volume, with 65% lost after the first drainage. Knowledge of the water contained in the ice provided a better understanding of GPR images and thus a more reliable interpretation of GPR data. However, SNMR imaging had a much lower resolution in comparison with GPR, and consequently GPR allowed a more accurate study of the evolution of cavity geometry caused by consecutive drainage and refilling. This study demonstrated the value of combining GPR data with SNMR data for the study of polythermal glaciers.
Source
Geophysics, vol. 81, num. 1, p. WA131 - WA146

puce  Accés à la notice sur le site Irstea Publications / Display bibliographic record on Irstea Publications website

  Liste complète des notices de CemOA