Kinematical structural stability

Lerbet, J. ; Challamel, N. ; Nicot, F. ; Darve, F.

Type de document
Article de revue scientifique à comité de lecture
Langue
Anglais
Affiliation de l'auteur
UNIVERSITE D'EVRY VAL D'ESSONNE IBISC FRA ; UNIVERSITE EUROPEENNE DE BRETAGNE FRA ; IRSTEA GRENOBLE UR ETGR FRA ; GRENOBLE INP UMR 5521 L3SR FRA
Année
2016
Résumé / Abstract
This paper gives an overview of our results obtained from 2009 until 2014 about paradoxical stability properties of non conservative systems which lead to the concept of Kinematical Structural Stability (Ki.s.s.). Due to Fischer-Courant results, this ki.s.s. is universal for conservative systems whereas new interesting situations may arise for non conservative ones. A remarkable algebraic property of the symmetric part of linear operators may generalize this result for divergence stability but leading only to a conditional ki.s.s. By duality, the concept of geometric degree of nonconservativity is highlighting. Paradigmatic examples of Ziegler systems illustrate the general results and their effectiveness.
Source
Discrete and Continuous Dynamical Systems-Series S, vol. 9, num. 2, p. 529 - 536

puce  Accés à la notice sur le site Irstea Publications / Display bibliographic record on Irstea Publications website

  Liste complète des notices de CemOA