3-dimensional flutter kinematic structural stability

Lerbet, J. ; Hello, G. ; Challamel, N. ; Nicot, F. ; Darve, F.

Type de document
Article de revue scientifique à comité de lecture
Langue
Anglais
Affiliation de l'auteur
UNIVERSITE D'EVRY VAL D'ESSONNE IBISC FRA ; UNIVERSITE D'EVRY VAL D'ESSONNE LMEE FRA ; UNIVERSITE EUROPEENNE DE BRETAGNE FRA ; IRSTEA GRENOBLE UR ETGR FRA ; GRENOBLE INP UMR 5521 L3SR FRA
Année
2016
Résumé / Abstract
Having recalled the kinematic structural stability (ki.s.s) issue and its solution for divergence-type instability, we address the same problem for flutter-type instability for the minimal required configuration of dimensions meaning 3 degree of freedom systems. We first get a sufficient non optimal condition. In a second time, the complete issue is tackled by two different ways leading to same results. A first way using calculations on Grassmann and Stiefel manifolds that may be generalized for any dimensional configuration. A second way using the specific dimensional configuration is brought back to calculations on the sphere. Differences with divergence ki.s.s are highlighted and examples illustrate the results.
Source
Nonlinear analysis-Real world applications, vol. 29, p. 19 - 37

puce  Accés à la notice sur le site Irstea Publications / Display bibliographic record on Irstea Publications website

  Liste complète des notices de CemOA