Calibrating a hydrological model in stage space to account for rating curve uncertainties: general framework and key challenges

Sikorska, A.E. ; Renard, B.

Type de document
Article de revue scientifique à comité de lecture
Langue
Anglais
Affiliation de l'auteur
UNIVERSITY OF ZURICH CHE ; IRSTEA LYON UR HHLY FRA
Année
2017
Résumé / Abstract
Hydrological models are typically calibrated with discharge time series derived from a rating curve, which is subject to parametric and structural uncertainties that are usually neglected. In this work, we develop a Bayesian approach to probabilistically represent parametric and structural rating curve errors in the cal- ibration of hydrological models. To achieve this, we couple the hydrological model with the inverse rating curve yielding the rainfall–stage model that is calibrated in stage space. Acknowledging uncertainties of the hydrological and the rating curve models allows assessing their contribution to total uncertainties of stages and discharges. Our results from a case study in France indicate that (a) ignoring rating curve uncertainty leads to changes in hydrological parameters, and (b) structural uncertainty of hydrological model dominates other uncertainty sources. The paper ends with discussing key challenges that remain to be addressed to achieve a meaningful quantification of various uncertainty sources that affect hydro- logical model, as including input errors.
Source
Advances in Water Resources, vol. 105, p. 51 - 66

puce  Accés à la notice sur le site Irstea Publications / Display bibliographic record on Irstea Publications website

  Liste complète des notices de CemOA